Secure session framework: an identity-based cryptographic key agreement and signature protocol

نویسنده

  • Christian Schridde
چکیده

Cryptographic protocols are used to encrypt data during their transmission over a network or to store it on a data carrier. This thesis is about the method of identity-based encryption. In this form of encryption, the name or identity of the target subject is used to encrypt the data. This property makes it a perfect tool for modern electronic communication, because all involved identities and endpoint addresses (e.g. IP addresses) have to be unique worldwide and must be known in order to establish a communication. The identity-based key agreement protocol that has been invented in this thesis has several advantages compared to existing schemes. One important property is its complete independence of key generators. This independence allows each participating security domain to set up and maintain its own key generator. They are not forced to agree on a common setup or a common secret anymore. Due to the properties of the protocol, the security domains are still compatible to each other. Users from one security domain can communicate with users from another security domain using encryption. This new property of independence is also carried over to a signature protocol. It allows users from different security domains to sign a certain object. Additionally, the act of signing is independent and the signers do not need to communicate with each other. Apart from the protocol and its security proofs with respect to standard definitions from the literature, the thesis contains an analysis of existing schemes. Attacks on known protocols and assumptions are presented, and it is shown under which circumstances these become insecure. On the one hand, a completely new approach that is based on defined or rather undefined objects in discrete structures is used. On the other hand, the method of lattice based reduction is successfully applied to the new area of secret sharing schemes. Finally, application scenarios for the protocol are presented. These scenarios are chosen such that the advantages of the protocol become apparent. The first application is telephony, GSM as well as Voice over IP (VoIP). In this case, the telephone number of the callee is used as the encryption key. Implementations on a modern mobile phone as well as within existing Voice over IP software are presented. The second application is IP networks. Here, the IP address of a communication unit is used as the encryption key. However, in this case, there are more problems than in the GSM/VoIP case, e.g., dynamic IP addresses or network address translation (NAT) where an IP address is substituted by another one. These are only two problems out of several for which solutions are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provably secure and efficient identity-based key agreement protocol for independent PKGs using ECC

Key agreement protocols are essential for secure communications in open and distributed environments. Recently, identity-based key agreement protocols have been increasingly researched because of the simplicity of public key management. The basic idea behind an identity-based cryptosystem is that a public key is the identity (an arbitrary string) of a user, and the corresponding private key is ...

متن کامل

A New Authentication Mechanism and Key Agreement Protocol for SIP Using Identity-based Cryptography

The Session Initiation Protocol (SIP) protocol is commonly used to establish Voice over IP (VoIP) calls. IETF SIP standards do not specify a secure authentication process thus allowing malicious parties to impersonate other parties or to charge calls to other parties. This paper proposes an extension to the SIP protocol that uses an identity-based authentication mechanism and key agreement prot...

متن کامل

An ECC-Based Mutual Authentication Scheme with One Time Signature (OTS) in Advanced Metering Infrastructure

Advanced metering infrastructure (AMI) is a key part of the smart grid; thus, one of the most important concerns is to offer a secure mutual authentication.  This study focuses on communication between a smart meter and a server on the utility side. Hence, a mutual authentication mechanism in AMI is presented based on the elliptic curve cryptography (ECC) and one time signature (OTS) consists o...

متن کامل

Advanced Secure User Authentication Framework for Cloud Computing

Cloud Computing, as an emerging, virtual, large-scale distributed computing model, has gained increasing attention these years. Meanwhile it also faces many security challenges, one of which is authentication. Lots of researches have been done in this area. Recently, Choudhury et al proposed a user authentication framework to ensure user legitimacy before entering into the cloud. They claimed t...

متن کامل

Generic Transformation of a CCA2-Secure Public-Key Encryption Scheme to an eCK-Secure Key Exchange Protocol in the Standard Model

LaMacchia, Lauter and Mityagin presented a strong security model for authenticated key agreement, namely the eCK model. They also constructed a protocol, namely the NAXOS protocol, that enjoys a simple security proof in the eCK model. However, the NAXOS protocol uses a random-oracle-based technique to combine the long-term secret key and the per-session-randomness; so-called NAXOStrick, in orde...

متن کامل

Authenticated Diffie–Hellman key agreement protocol using a single cryptographic assumption

In modern communication systems, a popular way of providing authentication in an authenticated Diffie–Hellman key agreement protocol is to sign the result of a one-way hash function (such as MD5) of a Diffie–Hellman public key. The security of such a protocol is based on the weakest of all the cryptographic assumptions of the algorithms involved: Diffie–Hellman key distribution, digital signatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010